Position filled - Long term autonomy for multi agent systems in the maritime domain

Position filled

One fully funded 4-year PhD studentship is available in Edinburgh starting September 2017. Sponsorship will be provided by BAE Systems, a global company with core skills in defense and autonomous systems.

With Autonomous Maritime Systems, both surface and underwater, now mature technologically, the research focus must change to multi-platform coordination and cooperation to achieve persistence, robustness to individual platform failures and improved mission execution, both in terms of timelines but also in terms of the quality of the intelligence gathered. It is also clear that marine drones will shortly be applied to many more applications than the current confines of mine counter measures in the military, data gathering and inspection in the ocean science and off-shore domains. Border security, search and rescue, light intervention and long term monitoring of the ocean will all become areas of growth.

In this programme, we propose to explore long-term persistent autonomy for multi-vehicles in the maritime domain. The main aim of the project is to develop algorithms that can devise, execute and monitor plans suitable for long-term missions of marine ‘systems of systems’ where overall goals are well defined but their effective implementation is dependent on external parameters than cannot be pre-determined. The system must have the ability to adapt its plan and the execution of the actions required to carry it out depending on changes in user priority, external conditions and vehicle availability. Timeline-based planning is especially meaningful in our context as they lend themselves to bridging the gap between task planning and execution monitoring, usually by relying on constraint-based reasoning algorithms. Also, existing implementations of such planners are highly modular and extendible, and have been successfully employed for controlling complex robot systems (e.g. in space missions)1  2. In addition, the last generation of these planners can combine several reasoners to account for specifications describing causal, temporal, resource and information dependencies in networked robot systems.3  However, the inability of modelling unforeseen situations and their reliance on centralised solvers impact their ability to support long-term missions of multiple vehicles in different and changing environments.

We will address these problems by investigating the use of multi-agent, decentralised implementations of hierarchical planning using different timelines (weeks, days, hours, minutes) in combination with machine learning approaches to enable long term plans to be adapted effectively. We will also explore how ‘down time’ in missions can be used opportunistically to carry out other ‘desirable’ actions that are not critical to the mission success. At the lowest level, atomic behaviours will be developed to enable the validation of the system on a number of defence relevant scenarios. These will be combined with safety and survivability ones to develop long term plans. The bandwidth limitation of the communication link between each platform composing the system will limit the amount of data that can be transferred between platforms and the tempo of interactions between the various systems. This will also be taken into account in the planning process. The system will be validated in simulation first to enable the comparison of various techniques and then on real vehicles, subject to the availability of suitable funds from other projects.

1 Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.; Plaunt, C.: IDEA: Planning at te Core of Autonomous Reactive Agents. In: 3rd International NASA Workshop on Planning and Scheduling for Space. 2002

2 Fratini, S.; Pecora, F.; Cesta, A.: Unifying Planning and Scheduling as Timelines in a Component-Based Perspective. In: Archives of Control Sciences, 18(2), 2008, 231-271.

3 Mansouri, M.; Pecora, F., More knowledge on the table: Planning with space, time and resources for robots, Robotics and Automation (ICRA), 2014 IEEE International Conference on, 2014 “Qualitative Representations for Robots”, Stanford, CA, March 24-26, 2014

Applicants should have, or expect to obtain one of the following qualifications:

  • BEng/MEng/MSc in Mechanical and/or Manufacturing Engineering (or equivalent) 1st class/70% average or above.
  • BSc/MSc Computer Science (or equivalent) 1st class/70% average or above.

Other engineering, science or mathematical backgrounds studied to a suitably qualified level may also be considered. Computer programming and robotics experience is desirable.

This is a fully funded 4-year Home/EU RAS CDT Scholarship covering Home/EU fees and stipend (£14,553 for 2017/18). Applications from overseas students might be considered but applicants would have to provide top-up fees to cover the balance of the total overseas fees rate for the academic year (currently £17,570/annum for 2017/2018).

To find out more please contact:

Prof Yvan Petillot Y.R.Petillot@hw.ac.uk


Dr Ron Petrick R.Petrick@hw.ac.uk

Studentship type: 
Industry sponsored studentship
£14 553.00
Date posted: 
Closing date: 

Position filled


How to apply

apply now

Remember to include the name of this project and sponsor in your application form.