Course descriptor B31YS

Course code	B31YS
Course title	Robotics Systems Science
Credits	15
School	Mathematical and Computer Sciences
SCQF Level	11
Semester	1
Aims	This course will be a level 11 degree level introduction to several core areas in robotics: kinematics of robots; robot control; motion planning; state estimation and signal processing; localization and mapping; computer vision for robotics; robotics architectures, tools and approaches for system integration. Lectures on these topics will be complemented by a large practical that exercises knowledge of a cross section of these techniques in the construction of an integrated robot system in the lab, motivated by a task such as robot navigation. Also, in addition to lectures on algorithms and lab sessions, we expect that there will be several lecture hours dedicated to discussion of implementation issues - how to go from the equations to code. The aim of the course is to present a unified view of the field, culminating in a practical involving the development of an integrated robotic system that actually embodies key elements of the major
Syllabus	 Kinematics - forward and inverse Control Sensing - proprioception, etc. Motion planning - basics and sampling based methods Motion planning - planning under uncertainty, etc State estimation, localization and mapping Implementing SLAM; Multi-modal sensor fusion Image acquisition Edge detection and segmentation Shape description and matching Two-view geometry Interest points and regions Recognition of specific objects Visual serving and ego-motion estimation Middleware and software engineering for robot systems Required Skills: This course is open to all MSc in Robotics and Beng/Meng in Robotics students. The course will require some knowledge of the following fundamental notions: Multivariate Calculus, Linear Algebra and matrix manipulations, Basic notions of Statistics and concepts including

competence is assumed. The course will use C++ / python in a Linux environment, GIT and OpenCV.
Reading list:
H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, Principles of Robot Motion: Theory, Algorithms and Implementations.
S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics.
D.A. Forsyth, J. Ponce, Computer Vision: A Modern Approach.
Efforts: 150 (Lecture Hours 30, Supervised Practical/Workshop/Studio Hours 30, Summative Assessment Hours 2, Directed Learning and Independent Learning Hours 88. You should expect to spend approximately 40 hours on the coursework for this course.

Learning Outcomes		
Subject Mastery	Model the motion of robotic systems in terms of kinematics	
	Analyse and evaluate a few major techniques for feedback control, motion planning and computer vision as applied to robotics	
	Translate a subset of standard algorithms for motion planning, localization and computer vision into practical implementations	
	Implement and evaluate a working, full robotic system involving elements of control, planning, localization and vision	
	Appreciate and apply software engineering approaches for the development of robotic software systems	
	Ability to critically review, evaluate and implement a range of advanced techniques in robotics	
	Ability to review exiting literature and present it to an audience	
	Ability to write a technical report	
Personal Abilities	The teams will be setup as a professional organisation and will be required to understand specifications from the project sheet, develop a design document, an implementation plan and a test plan, as routinely done in commercial organisations. We will also introduce the notion of risk register.	
	The project will develop autonomy and teamwork as groups of students will work together to develop a unique solution to solve a common problem on a set of robotics platforms. They will have a choice of sensors and algorithms to choose from and will need to work as a team (teamwork) on different aspects (Accountability) of the system.	
	The project will be mostly computer based developing high level engineering skills including knowledge of standard ICT frameworks for	

robotics such as ROS and GIT. It will also involve the development of
algorithms based on scientific programming (Numeracy).

Assessment method | 60% course work 40% examination